p53 Specifically Binds Triplex DNA In Vitro and in Cells

نویسندگان

  • Marie Brázdová
  • Vlastimil Tichý
  • Robert Helma
  • Pavla Bažantová
  • Alena Polášková
  • Aneta Krejčí
  • Marek Petr
  • Lucie Navrátilová
  • Olga Tichá
  • Karel Nejedlý
  • Martin L. Bennink
  • Vinod Subramaniam
  • Zuzana Bábková
  • Tomáš Martínek
  • Matej Lexa
  • Matej Adámik
چکیده

Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ساختار مولکول DNA سه رشته ای: اهمیت و کاربردهای پزشکی آن

Back in 1957, when investigators produced a triple-stranded form of DNA while studying synthetic nucleic acids, few researchers paid much attention to the discovery. However, triplex DNA was never entirely forgotton and especially since 1987 its structural and functional importance in biological systems as well as its medical applications and therapeutic potentional have been extensively studie...

متن کامل

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

Recognition of Local DNA Structures by p53 Protein

p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to targ...

متن کامل

القای آپوپتوز وابسته به p53 در رده‌ی سلولی لوسمی لنفوبلاستیک حاد پیش‌ساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA

Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...

متن کامل

In vivo transcription of a progesterone-responsive gene is specifically inhibited by a triplex-forming oligonucleotide.

Oligonucleotides provide novel reagents for inhibition of gene expression because of their high affinity binding to specific nucleotide sequences. We describe a 38 base, single-stranded DNA that forms a triple helix or 'triplex' on progesterone response elements of a target gene. This triplex-forming oligonucleotide binds with a Kd = 100 nM at 37 degrees C and physiological pH, and blocks bindi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016